Optimal Composition of Characteristic Modes For Minimal Quality Factor Q

Miloslav Čapek Lukáš Jelínek

Department of Electromagnetic Field CTU in Prague, Czech Republic miloslav.capek@fel.cvut.cz

2016 IEEE International Symposium on Antennas and Propagation/USNC-URSI National Radio Science meeting Fajardo, Puerto Rico June 27, 2016

Outline

D Quality factor Q

- 2 Minimization of quality factor Q
- 3 Results: Quality factor Q
- 4 Results: Sub-optimality of G/Q
- 5 Excitation of optimal currents
- 6 Conclusion

In this talk:

- electric currents in vacuum,
- only surface regions are treated,
- ▶ all quantities in their matrix form, i.e. operators \rightarrow matrices, functions \rightarrow vectors,
- ▶ small electrical size is considered, i.e. ka < 1,
- ▶ time-harmonic quantities, i.e., $\mathcal{A}(\mathbf{r}, t) = \sqrt{2} \operatorname{Re} \{ \mathbf{A}(\mathbf{r}) \exp(j\omega t) \}$ are considered.

Quality factor Q . . .

- ▶ is (generally) proportional to FBW,
- ▶ therefore, of interest for ESA (ka < 1).

Fundamental bounds of quality factor ${\cal Q}$

- ▶ are known for several canonical bodies,
- ▶ many interesting works recently appeared¹,
 - still, they are unknown for arbitrarily shaped bodies.

¹M. Gustafsson, C. Sohl, and G. Kristensson, "Physical limitations on antennas of arbitrary shape", Proc. of Royal Soc. A, vol. 463, pp. 2589–2607, 2007. DOI: 10.1098/rspa.2007.1893 M. Gustafsson, D. Tayli, C. Ehrenborg, et al., "Tutorial on antenna current optimization using MATLAB and CVX", FERMAT, 2015 O. S. Kim, "Lower bounds on Q for finite size antennas of arbitrary shape", IEEE Trans. Antennas Propag., vol. 64, no. 1, pp. 146–154, 2016. DOI: 10.1109/TAP.2015.2499764

 $\check{C}apek$, Jelínek – AP-S/URSI 2016

Current \mathbf{I}_{opt} minimizing quality factor Q of a given shape Ω :

$$Q\left(\mathbf{I}_{\text{opt}}\right) = \min_{\mathbf{I}} \{Q\left(\mathbf{I}\right)\} \tag{1}$$

Current \mathbf{I}_{opt} minimizing quality factor Q of a given shape Ω :

$$Q\left(\mathbf{I}_{\text{opt}}\right) = \min_{\mathbf{I}} \{Q\left(\mathbf{I}\right)\}$$
(1)

How to find \mathbf{I}_{opt} for a given Ω ?

Current \mathbf{I}_{opt} minimizing quality factor Q of a given shape Ω :

$$Q\left(\mathbf{I}_{\text{opt}}\right) = \min_{\mathbf{I}} \{Q\left(\mathbf{I}\right)\}$$
(1)

How to find \mathbf{I}_{opt} for a given Ω ?

Procedure followed in this talk²:

 $\check{C}apek$, Jelínek – AP-S/URSI 2016

 $^{^2\}mathrm{M.}$ Capek and L. Jelinek, "Optimal composition of modal currents for minimal quality factor Q", , 2016, arXiv:1602.04808

Current $\mathbf{I}_{\mathrm{opt}}$ minimizing quality factor Q of a given shape $\Omega:$

$$Q\left(\mathbf{I}_{\text{opt}}\right) = \min_{\mathbf{I}} \{Q\left(\mathbf{I}\right)\} \tag{1}$$

How to find \mathbf{I}_{opt} for a given Ω ?

Procedure followed in this talk²:

STEP 1 definition of quality factor Q,

Čapek, Jelínek – AP-S/URSI 2016

 $^{^2\}mathrm{M.}$ Capek and L. Jelinek, "Optimal composition of modal currents for minimal quality factor Q", , 2016, arXiv:1602.04808

Current $\mathbf{I}_{\mathrm{opt}}$ minimizing quality factor Q of a given shape $\Omega:$

$$Q\left(\mathbf{I}_{\text{opt}}\right) = \min_{\mathbf{I}} \{Q\left(\mathbf{I}\right)\} \tag{1}$$

How to find \mathbf{I}_{opt} for a given Ω ?

Procedure followed in this talk²:

STEP 1 definition of quality factor Q,

STEP 2 definition of stored energy $W_{\rm sto}$,

Čapek, Jelínek – AP-S/URSI 2016

 $^{^2\}mathrm{M.}$ Capek and L. Jelinek, "Optimal composition of modal currents for minimal quality factor Q", , 2016, arXiv:1602.04808

Current $\mathbf{I}_{\mathrm{opt}}$ minimizing quality factor Q of a given shape $\Omega:$

 $Q\left(\mathbf{I}_{\text{opt}}\right) = \min_{\mathbf{I}} \{Q\left(\mathbf{I}\right)\} \tag{1}$

How to find \mathbf{I}_{opt} for a given Ω ?

Procedure followed in this talk²:

- STEP 1 definition of quality factor Q,
- STEP 2 definition of stored energy $W_{\rm sto}$,
- STEP 3 formulation of optimization task related to (1),

 $\check{C}apek$, Jelínek – AP-S/URSI 2016

 $^{^2{\}rm M.}$ Capek and L. Jelinek, "Optimal composition of modal currents for minimal quality factor Q", , 2016, arXiv:1602.04808

Current $\mathbf{I}_{\mathrm{opt}}$ minimizing quality factor Q of a given shape $\Omega:$

 $Q\left(\mathbf{I}_{\text{opt}}\right) = \min_{\mathbf{I}} \{Q\left(\mathbf{I}\right)\} \tag{1}$

How to find \mathbf{I}_{opt} for a given Ω ?

Procedure followed in this talk²:

- STEP 1 definition of quality factor Q,
- STEP 2 definition of stored energy $W_{\rm sto}$,
- STEP 3 formulation of optimization task related to (1),
- STEP 4 representation of \mathbf{I}_{opt} in an appropriate basis,

 $\check{C}apek$, Jelínek – AP-S/URSI 2016

 $^{^2{\}rm M.}$ Capek and L. Jelinek, "Optimal composition of modal currents for minimal quality factor Q", , 2016, arXiv:1602.04808

Current $\mathbf{I}_{\mathrm{opt}}$ minimizing quality factor Q of a given shape $\Omega:$

$$Q\left(\mathbf{I}_{\text{opt}}\right) = \min_{\mathbf{I}} \{Q\left(\mathbf{I}\right)\}$$
(1)

How to find \mathbf{I}_{opt} for a given Ω ?

Procedure followed in this talk²:

- STEP 1 definition of quality factor Q,
- STEP 2 definition of stored energy $W_{\rm sto}$,
- STEP 3 formulation of optimization task related to (1),
- STEP 4 representation of \mathbf{I}_{opt} in an appropriate basis,

STEP 5 optimal composition of modal currents forming \mathbf{I}_{opt} .

 $^{^2{\}rm M.}$ Capek and L. Jelinek, "Optimal composition of modal currents for minimal quality factor Q", , 2016, arXiv:1602.04808

Current $\mathbf{I}_{\mathrm{opt}}$ minimizing quality factor Q of a given shape $\Omega:$

$$Q\left(\mathbf{I}_{\text{opt}}\right) = \min_{\mathbf{I}} \{Q\left(\mathbf{I}\right)\}$$
(1)

How to find \mathbf{I}_{opt} for a given Ω ?

Procedure followed in this talk²:

- STEP 1 definition of quality factor Q,
- STEP 2 definition of stored energy $W_{\rm sto}$,
- STEP 3 formulation of optimization task related to (1),
- STEP 4 representation of \mathbf{I}_{opt} in an appropriate basis,

STEP 5 optimal composition of modal currents forming \mathbf{I}_{opt} .

 $^{^2{\}rm M.}$ Capek and L. Jelinek, "Optimal composition of modal currents for minimal quality factor Q", , 2016, arXiv:1602.04808

Step 1+2: Definition of Q and $W_{\rm sto}$

Quality factor ${\cal Q}$ defined by parts as

$$Q(\mathbf{I}) = Q_{\mathrm{U}}(\mathbf{I}) + Q_{\mathrm{ext}}(\mathbf{I})$$
(2)

037

using stored energy³

and tuning

$$Q_{\rm U}(\mathbf{I}) = \frac{\omega \widetilde{W}_{\rm sto}}{P_{\rm r}} = \frac{\mathbf{I}^{\rm H} \mathbf{X}' \mathbf{I}}{2\mathbf{I}^{\rm H} \mathbf{R} \mathbf{I}} = \frac{\mathbf{I}^{\rm H} \omega \frac{\partial \mathbf{X}}{\partial \omega} \mathbf{I}}{2\mathbf{I}^{\rm H} \mathbf{R} \mathbf{I}},$$
(3)
$$Q_{\rm ext}(\mathbf{I}) = \frac{|\mathbf{I}^{\rm H} \mathbf{X} \mathbf{I}|}{2\mathbf{I}^{\rm H} \mathbf{R} \mathbf{I}}.$$
(4)

$$oldsymbol{J} pprox \sum_n I_n oldsymbol{f}_n, \quad \mathbf{Z} = \mathbf{R} + \mathbf{j} \mathbf{X}$$

³M. Cismasu and M. Gustafsson, "Antenna bandwidth optimization with single freuquency simulation", *IEEE Trans. Antennas Propag.*, vol. 62, no. 3, pp. 1304–1311, 2014, R. F. Harrington and J. R. Mautz, "Control of radar scattering by reactive loading", *IEEE Trans. Antennas Propag.*, vol. 20, no. 4, pp. 446–454, 1972. DOI: 10.1109/TAP.1972.1140234, G. A. E. Vandenbosch, "Reactive energies, impedance, and Q factor of radiating structures", *IEEE Trans. Antennas Propag.*, vol. 58, no. 4, pp. 1112–1127, 2010. DOI: 10.1109/TAP.2010.2041166.

Čapek, Jelínek – AP-S/URSI 2016

Step 3: Formulation of the problem

Find \mathbf{I}_{opt} so that

minimize quality factor
$$Q$$
, (5)
subject to $\widetilde{W}_{\rm m} - \widetilde{W}_{\rm e} = 0.$ (6)

Step 3: Formulation of the problem

Find \mathbf{I}_{opt} so that

minimize quality factor
$$Q$$
, (5)
subject to $\widetilde{W}_{\rm m} - \widetilde{W}_{\rm e} = 0.$ (6)

Searching for self-resonant current \mathbf{I}_{opt} fulfilling (5)–(6) is not a convex problem.

Step 4: Representation of $\mathbf{I}_{\mathrm{opt}}$

Current decomposition

Let us decompose the current into (yet unknown) modes such that

$$\mathbf{I} = \sum_{n=1}^{N} \alpha_n \mathbf{I}_n.$$
(7)

Step 4: Representation of \mathbf{I}_{opt}

Let us decompose the current into (yet unknown) modes such that

$$\mathbf{I} = \sum_{n=1}^{N} \alpha_n \mathbf{I}_n.$$
(7)

Then, the quality factor Q reads

$$Q(\mathbf{I}) = \frac{\sum_{v=1}^{V} \sum_{u=1}^{U} \alpha_{u}^{*} \alpha_{v} \mathbf{I}_{u}^{\mathrm{H}} \mathbf{X}' \mathbf{I}_{v} + \left| \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha_{u}^{*} \alpha_{v} \mathbf{I}_{u}^{\mathrm{H}} \mathbf{X} \mathbf{I}_{v} \right| }{2 \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha_{u}^{*} \alpha_{v} \mathbf{I}_{u}^{\mathrm{H}} \mathbf{R} \mathbf{I}_{v}}.$$
 (8)

Step 4: Representation of \mathbf{I}_{opt}

Let us decompose the current into (yet unknown) modes such that

$$\mathbf{I} = \sum_{n=1}^{N} \alpha_n \mathbf{I}_n.$$
(7)

Then, the quality factor Q reads

$$Q\left(\mathbf{I}\right) = \frac{\sum_{v=1}^{V} \sum_{u=1}^{U} \alpha_{u}^{*} \alpha_{v} \mathbf{I}_{u}^{\mathrm{H}} \mathbf{X}' \mathbf{I}_{v} + \left| \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha_{u}^{*} \alpha_{v} \mathbf{I}_{u}^{\mathrm{H}} \mathbf{X} \mathbf{I}_{v} \right|}{2 \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha_{u}^{*} \alpha_{v} \mathbf{I}_{u}^{\mathrm{H}} \mathbf{R} \mathbf{I}_{v}}.$$
(8)

Analytical solution can easily be found if

$$\mathbf{I}_{u}^{\mathrm{H}}\mathbf{R}\mathbf{I}_{v}=\delta_{uv},\tag{9}$$

$$\mathbf{I}_{u}^{\mathrm{H}}\mathbf{X}\mathbf{I}_{v} = A_{uv}\delta_{uv},\tag{10}$$

$$\mathbf{I}_{u}^{\mathrm{H}}\mathbf{X}'\mathbf{I}_{v} = B_{uv}\delta_{uv}.$$
(11)

Step 4: Representation of **I**_{opt}

Normalizing $\alpha_1 = 1$, we get the result⁴ if

▶ tuning is represented by localized current (i.e. external tuning element) as

$$Q\left(\mathbf{I}_{\text{opt}}\right) = \frac{\mathbf{I}_{1}^{\text{H}} \mathbf{X}' \mathbf{I}_{1} + \left|\mathbf{I}_{1}^{\text{H}} \mathbf{X} \mathbf{I}_{1}\right|}{2},\tag{12}$$

▶ tuning is represented by low-order modal current as

$$Q\left(\mathbf{I}_{\text{opt}}\right) = \frac{\mathbf{I}_{1}^{\text{H}} \mathbf{X}' \mathbf{I}_{1} + \left|\alpha_{\text{opt}}\right|^{2} \mathbf{I}_{2}^{\text{H}} \mathbf{X}' \mathbf{I}_{2}}{2\left(1 + \left|\alpha_{\text{opt}}\right|^{2}\right)}.$$
(13)

Both options are discussed in the following figure...

Čapek, Jelínek – AP-S/URSI 2016

 $^{^4{\}rm M.}$ Capek and L. Jelinek, "Optimal composition of modal currents for minimal quality factor Q", , 2016, arXiv:1602.04808

Localized and distributive tunning

Tuning by external lumped element (localized current).

Localized and distributive tunning

Tuning by external lumped element (localized current).

Tuning by distributive current.

Step 5: Optimal composition to form \mathbf{I}_{opt}

To diagonalize \mathbf{R} , \mathbf{X} and \mathbf{X}' we can choose:

 $\mathbf{XI}_u = \lambda_u \mathbf{RI}_u,$

(16)

Step 5: Optimal composition to form \mathbf{I}_{opt}

To diagonalize $\mathbf{R},\,\mathbf{X}$ and \mathbf{X}' we can choose:

 $\mathbf{XI}_u = \lambda_u \mathbf{RI}_u,\tag{14}$

$$\mathbf{X}'\mathbf{I}_u = \xi_u \mathbf{R}\mathbf{I}_u,\tag{15}$$

$$\mathbf{XI}_u = \chi_u \mathbf{X}' \mathbf{I}_u. \tag{16}$$

▶ All GEPs involve only two of the three operators⁵ (\mathbf{R} , \mathbf{X} , \mathbf{X}').

Čapek, Jelínek – AP-S/URSI 2016

⁵Modal currents have cross-terms with the non-diagonalized operator, e.g., for (14) $\mathbf{I}_{u}^{H} \mathbf{X}' \mathbf{I}_{v} \neq 0$.

Step 5: Optimal composition to form \mathbf{I}_{opt}

To diagonalize \mathbf{R} , \mathbf{X} and \mathbf{X}' we can choose:

 $\mathbf{XI}_u = \lambda_u \mathbf{RI}_u,\tag{14}$

$$\mathbf{X}'\mathbf{I}_u = \xi_u \mathbf{R}\mathbf{I}_u,\tag{15}$$

$$\mathbf{XI}_u = \chi_u \mathbf{X}' \mathbf{I}_u. \tag{16}$$

- ▶ All GEPs involve only two of the three operators⁵ (\mathbf{R} , \mathbf{X} , \mathbf{X}').
- ▶ Using characteristic modes, defined by (14), we get⁶ for \mathbf{I}_{opt}

$$\alpha_{\rm opt} = \sqrt{-\frac{\lambda_1}{\lambda_2}} e^{j\varphi}, \quad \varphi \in [-\pi, \pi], \quad \lambda_2 \neq 0.$$
(17)

⁵Modal currents have cross-terms with the non-diagonalized operator, e.g., for (14) $\mathbf{I}_{u}^{H} \mathbf{X}' \mathbf{I}_{v} \neq 0$. ⁶M. Capek and L. Jelinek, "Optimal composition of modal currents for minimal quality factor Q", , 2016, arXiv:1602.04808

Čapek, Jelínek – AP-S/URSI 2016

Special case for which \mathbf{R} , \mathbf{X} and \mathbf{X}' are all diagonalizable.

Optimal ratio between dominant (TM) and tuning (TE) modes:

$$\alpha_{\rm opt} = \sqrt{-\frac{\lambda_{\rm TM10}}{\lambda_{\rm TE10}}} e^{j\varphi} = \sqrt{-\frac{1 - ka \frac{y_0(ka)}{y_1(ka)}}{1 - ka \frac{j_0(ka)}{j_1(ka)}}} e^{j\varphi}$$

▶ arbitrary φ for minimal quality factor Q,
▶ specified φ for maximal G/Q (will be shown later).

A spherical shell

Minimization of quality factor ${\cal Q}$

Special case for which \mathbf{R} , \mathbf{X} and \mathbf{X}' are all diagonalizable.

Normalized quality factor Q and reduction rate α_{opt} for a spherical shell.

A spherical shell

Comparison of various⁷ "minimal" quality factors Q of a spherical shell normalized to $Q_{\rm Chu}^{\rm TM}$.

 $\check{C}apek$, Jelínek – AP-S/URSI 2016

 $^{^7}Q_{\rm RY}$ – Rhodes (1976), Yaghjian and Best (2005), Vandenbosch (2010), Gustafsson et al. (2013); $Q_{\rm CR}$ – Collin and Rothschild (1964); $Q_{\rm Thal}$ – Thal (2011); $Q\left({\rm I_{opt}}\right)$ – this work.

A rectangular plate

▶ The cross-terms $\mathbf{I}_{u}^{\mathrm{H}}\mathbf{X}'\mathbf{I}_{v}$ are negligible (for all calculated examples).

Normalized quality factor Q and reduction rate α_{opt} for $L \times L/2$ rectangular plate.

What about G/Q limits for \mathbf{I}_{opt} ?

▶ Current \mathbf{I}_{opt} found in this work yields (sub-)optimal G/Q as well.

 G/Q_{opt} ratios for different canonical shapes⁸.

⁸Yellow asterisks – Gustafsson et al. (2007), solid blue lines – Gustafsson et al. (2015).

 $\check{C}apek$, Jelínek – AP-S/URSI 2016

Optimal Composition of CMs For Minimal Q

Results: Sub-optimality of G/Q

$\Omega \ (ka = 0.5)$	$\frac{Q(\mathbf{I}_{\text{opt}})}{Q_{\text{Chu}}^{\text{TM}}}$	$\frac{Q(\mathbf{I}_{\text{opt}})}{Q(\mathbf{I}_{1})}$	$\frac{G_y}{Q(\mathbf{I}_{\text{opt}})}$	$\frac{S}{S_{\square}}$
	3.566	0.839	0.0352	1.000
	3.613	0.840	0.0349	0.689
	3.658	0.842	0.0347	0.667
	3.691	0.839	0.0343	0.533
	4.398	0.995	0.0285	0.644
	4.670	1.000	0.0283	0.378

⁹G. A. E. Vandenbosch, "Explicit relation between volume and lower bound for Q for small dipole topologies", *IEEE Trans. Antennas Propag.*, vol. 60, no. 2, pp. 1147–1152, 2012. DOI: 10.1109/TAP.2011.2173127

 $\check{C}apek$, Jelínek – AP-S/URSI 2016

Optimal currents \times optimal antennas

 $Q\left(\mathbf{I}_{\mathrm{opt}}\right)/Q_{\mathrm{Chu}}^{\mathrm{TM}} = 4.85$

Optimal current $\mathbf{I}_{\mathrm{opt}}.$

 $\check{C}apek, Jelínek - AP-S/URSI 2016$

¹⁰S. R. Best, "Electrically small resonant planar antennas", *IEEE Antennas Propag. Magazine*, vol. 57, no. 3, pp. 38–47, 2015. DOI: 10.1109/MAP.2015.2437271

Optimal currents \times optimal antennas

 $Q\left(\mathbf{I}_{\mathrm{opt}}\right)/Q_{\mathrm{Chu}}^{\mathrm{TM}} = 4.85$

Optimal current I_{opt} .

same ka

$$Q/Q_{\mathrm{Chu}}^{\mathrm{TM}} = 6.05$$

Near-optimal antenna¹⁰.

 $\check{C}apek$, Jelínek – AP-S/URSI 2016

¹⁰S. R. Best, "Electrically small resonant planar antennas", *IEEE Antennas Propag. Magazine*, vol. 57, no. 3, pp. 38–47, 2015. DOI: 10.1109/MAP.2015.2437271

Optimal currents \times optimal antennas

 \odot

FEEDING

 $Q\left(\mathbf{I}_{\mathrm{opt}}\right)/Q_{\mathrm{Chu}}^{\mathrm{TM}} = 4.85$

Optimal current I_{opt} .

 $Q/Q_{\mathrm{Chu}}^{\mathrm{TM}} = 6.05$

Near-optimal antenna¹⁰.

 $\check{C}apek, Jelínek - AP-S/URSI 2016$

¹⁰S. R. Best, "Electrically small resonant planar antennas", *IEEE Antennas Propag. Magazine*, vol. 57, no. 3, pp. 38–47, 2015. DOI: 10.1109/MAP.2015.2437271

Excitation: NP-hard problem?

Finding the current I_{opt} is only a (small) part of a synthesis since it is incompatible with any realistic feeding.

- ▶ Proper feeding position(s) must be determined.
- ▶ Shape Ω must be modified.

Excitation: NP-hard problem?

Finding the current I_{opt} is only a (small) part of a synthesis since it is incompatible with any realistic feeding.

- ▶ Proper feeding position(s) must be determined.
- Shape Ω must be modified.

How much DOF we have?				Ω
N (unknowns)	28	52	120	∞
possibilities				
unique solutions				

Complexity of geometrical optimization for given voltage gap (red line) and ${\cal N}$ unknowns.

Excitation: NP-hard problem?

Finding the current I_{opt} is only a (small) part of a synthesis since it is incompatible with any realistic feeding.

- ▶ Proper feeding position(s) must be determined.
- Shape Ω must be modified.

How much DOF we have?				Ω
N (unknowns)	28	52	120	∞
possibilities	$5.24\cdot 10^{29}$	$1.39\cdot 10^{68}$	$1.15\cdot 10^{199}$	∞
unique solutions	$2.68 \cdot 10^8$	$4.50\cdot 10^{15}$	$1.33\cdot 10^{36}$	∞

Complexity of geometrical optimization for given voltage gap (red line) and ${\cal N}$ unknowns.

Antenna synthesis – how far can we go?

▶ On the present, only the heuristic optimization...

Excitation placement is *ad hoc*.

Computational time: $12116\,\mathrm{s}$

Result of heuristic structural optimization using MOGA NSGAII (Q_{ext} , Q_{U}) from AToM-FOPS.

Excitation placement is *ad hoc*.

Computational time: $12116\,\mathrm{s}$

Computational time: $1155 \,\mathrm{s}$

Result of heuristic structural optimization using MOGA NSGAII (Q_{ext} , Q_{U}) from AToM-FOPS.

Result of deterministic in-house algorithm removing in each iteration the "worse" edge.

Excitation placement is *ad hoc*.

$$Q\left(\mathbf{I}\right)/Q_{\mathrm{Chu}}^{\mathrm{TM}}=7.23$$

Resulting sub-optimal current approaching minimal value of quality factor Q.

$$Q\left(\mathbf{I}\right)/Q_{\mathrm{Chu}}^{\mathrm{TM}} = 7.24$$

Resulting current given by in-house deterministic algorithm.

Excitation placement is *ad hoc*.

$$Q\left(\mathbf{I}\right)/Q_{\mathrm{Chu}}^{\mathrm{TM}}=7.23$$

Resulting sub-optimal current approaching minimal value of quality factor Q.

Resulting current given by in-house deterministic algorithm.

Depicted currents I are completely different from I_{opt}!
Optimal currents are incompatible with realistic (fed) scenarios.

Conclusion

Optimal current \mathbf{I}_{opt} approaching lower bounds of quality factor Q can easily be obtained assuming:

- \blacktriangleright small ka (negligible cross-terms),
- ▶ electrical currents,
- ▶ surface geometries.

(Sub-) optimal currents for $G, G/Q, \eta_{rad}$ etc. can be found if proper GEP (modal decomposition) is utilized.

Conclusion

Optimal current \mathbf{I}_{opt} approaching lower bounds of quality factor Q can easily be obtained assuming:

- \blacktriangleright small ka (negligible cross-terms),
- ▶ electrical currents,
- ▶ surface geometries.

(Sub-)optimal currents for $G, G/Q, \eta_{rad}$ etc. can be found if proper GEP (modal decomposition) is utilized.

Similar work of the same topic recently published¹¹. Talk relevant to this presentation:

▶ L. Jelinek and M. Capek: Optimal Currents in the Characteristic Modes Basis¹², session MO–A1.4P, Mo (14:20).

Čapek, Jelínek – AP-S/URSI 2016

¹¹J. Chalas, K. Sertel, and J. L. Volakis, "Computation of the Q limits for arbitrary-shaped antennas using characteristic modes", *IEEE Trans. Antennas Propag. (Early Access)*, vol. PP, pp. 1–11, 2016. DOI: 10.1109/tap.2016.2557844

¹²L. Jelinek and M. Capek, "Optimal currents on arbitrarily shaped surfaces", , 2016, arXiv:1602.05520

Conclusion

Optimal current \mathbf{I}_{opt} approaching lower bounds of quality factor Q can easily be obtained assuming:

- \blacktriangleright small ka (negligible cross-terms),
- ▶ electrical currents,
- ▶ surface geometries.

(Sub-)optimal currents for $G, G/Q, \eta_{rad}$ etc. can be found if proper GEP (modal decomposition) is utilized.

Future work

- ▶ Excitation placement, number of feeders.
- ▶ Shape modifications.
- ▶ Deeper understanding of the relationship between optimal currents and optimal antennas.

Questions?

For complete PDF presentation see • capek.elmag.org

Miloslav Čapek miloslav.capek@fel.cvut.cz

27.6. 2016, v1.0