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Optimal Design and Its Feasibility

Designing EM Devices. . .
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I What is the optimal design?

I Optimal design for what. . . ?

I What is the optimal performance?

Ω1

Folded loop
(handsets)

Ω2

E-shaped patch
(GPS, WLAN)

Ω3

“Mag. monopoles”
(PGB, HIS)

Ω4

Meandered dipole
(RFID)

Ω5

Monopoles/PIFAs
(LTE)
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Optimal Design and Its Feasibility

Degrees of Freedom and Figure of Merits

Materials

Geometry Excitation

Electrical
size

Design domain

Performance

Regularity Features

Electrical
size

Criteria domain

Electrical
size

Analysis

Synthesis
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Optimal Design and Its Feasibility

?

Analysis

I Shape is given, feeding is known.

I The task is to determine EM quantities.

I Mastered.

I Plenty of circuit & full-wave EM
simulators.

Synthesis (Inverse design)

I EM behavior is specified.

I The task is to find optimal shape.

I Unsolved (except of rare cases).

I NP-hard/NP-complete.
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Miloslav Čapek, et al. Fundamental Bounds In Electromagnetism 5 / 29



Optimal Design and Its Feasibility

?

Analysis

I Shape is given, feeding is known.

I The task is to determine EM quantities.

I Mastered.

I Plenty of circuit & full-wave EM
simulators.

Synthesis (Inverse design)

I EM behavior is specified.

I The task is to find optimal shape.

I Unsolved (except of rare cases).

I NP-hard/NP-complete.
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Optimal Design and Its Feasibility

Design Strategies

1. Designer’s skill, experiences, and intuition.

2. Parameter sweep for predefined shapes.

3. Design libraries.

4. Local optimization (gradient-based).

5. Global optimization (heuristics).

6. Memetics, machine-learning-assisted
techniques.
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Optimal Design and Its Feasibility

Design Curve
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Optimal Design and Its Feasibility

Design Curve
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Fundamental Bounds

Fundamental Bounds
Example: Energy Extraction

W

Wbound
≈ 10−9

Combustion

W

Wbound
≈ 10−3

Nuclear fission

W

Wbound
≈ 10−2

Nuclear fusion

W

Wbound
= 1

Annihilation of matter and
antimatter

What is the physical bound on energy production from fuel with mass m? Wbound = mc2
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Fundamental Bounds

Approaching Fundamental Bounds in EM – Overview

I Circuit quantities (e.g., equivalent circuits).

I Wheeler (radiation power factor, 1947)
I Chu (Q-factor, 1948)
I Fano (matching, 1950)
I Thal (Q-factor, 1978)
I Pfeiffer (radiation efficiency, 2017)

I Field quantities (e.g., spherical harmonics).

I Harrington (gain, 1965)
I Collin and Rothschild (Q-factor, 1963)

I Source currents (e.g., eigenvalue problems).

I Uzsoky and Solymar (gain, 1955)
I Harrington (gain, 1958, Q/G, 1960)
I Smith (matching, 1967)
I Gustafsson et al. (2010+)

I Related bounds

I Shannon (capacity, 1948)

ε0a µ0a Z0

E

R3

f L g
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Miloslav Čapek, et al. Fundamental Bounds In Electromagnetism 10 / 29

https://www.cvut.cz/en


Fundamental Bounds

Approaching Fundamental Bounds in EM – Overview

I Circuit quantities (e.g., equivalent circuits).

I Wheeler (radiation power factor, 1947)
I Chu (Q-factor, 1948)
I Fano (matching, 1950)
I Thal (Q-factor, 1978)
I Pfeiffer (radiation efficiency, 2017)

I Field quantities (e.g., spherical harmonics).

I Harrington (gain, 1965)
I Collin and Rothschild (Q-factor, 1963)

I Source currents (e.g., eigenvalue problems).

I Uzsoky and Solymar (gain, 1955)
I Harrington (gain, 1958, Q/G, 1960)
I Smith (matching, 1967)
I Gustafsson et al. (2010+)

I Related bounds

I Shannon (capacity, 1948)

ε0a µ0a Z0

E

R3

f L g
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First Attempts

First Attempts: Directivity

What is the highest achievable directivity of an antenna?

I It is possible to design an antenna of arbitrarily
small dimensions with a directivity as high as
desired1.
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4C. W. Oseen, “Die Einsteinsche Nadelstichstrahlung und die Maxwellschen Gleichungen,” Ann. Phys.,
vol. 69, no. 19, pp. 202–204, 1922
A. Bloch, R. Medhurst, and S. Pool, “A new approach to the design of superdirective aerial arrays,” Proc. IEE,
vol. 100, no. 67, pp. 303–314, 1953
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First Attempts

First Attempts: Q-factor

What is the highest achievable fractional bandwidth2 of a single-resonant antenna?

FBW <
2 |Γ|
QChu

(1) QChu =
1

2

(
1

(ka)
3 +

2

ka

)
(2)

Key ingredient: Expansion of field into spherical waves.
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(1) QChu =
1

2

(
1

(ka)
3 +

2

ka

)
(2)

Key ingredient: Expansion of field into spherical waves.

5L. J. Chu, “Physical limitations of omni-directional antennas,” J. Appl. Phys., vol. 19, pp. 1163–1175, 1948
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First Attempts

First Attempts: Away From Spheres

I Spherical waves are only suitable for spherical design regions.

I The developed bounds are relatively loose as compared to common antenna desings.

“Shape-specific” fundamental bounds3

Given a specific design region, what is the best performace we can get from
a device build in this region from a given material?
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5M. Uzsoky and L. Solymár, “Theory of super-directive linear arrays,” Acta Physica Academiae
Scientiarum Hungaricae, vol. 6, no. 2, pp. 185–205, 1956
R. F. Harrington, “Antenna excitation for maximum gain,” IEEE Trans. Antennas Propag., vol. 13, no. 6,
pp. 896–903, 1965
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Example: Bounds on Radiation Efficiency

Example: Radiation Efficiency and Dissipation Factor

Radiation efficiency4:

ηrad =
Prad

Prad + Plost
=

1

1 + δlost
(3)

Dissipation factor5 δ:

δlost =
Plost

Prad
(4)

I fraction of quadratic forms (can be scaled with resistivity model).

4145-2013 – IEEE Standard for Definitions of Terms for Antennas, IEEE, 2014
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Utilizing Integral Equations

Integral Operators and Their Algebraic Representation

Radiated and reactive power:

Prad + 2jω (Wm −We) =
1

2
〈J (r) ,Z [J (r)]〉

Lost power (surface resistivity model):

Plost =
1

2
〈J (r) ,Re {Zs}J (r)〉

I The same approach as with the method of moments6 (MoM)

J (r) ≈
∑
n

Inψn (r)

Miloslav Čapek, et al. Fundamental Bounds In Electromagnetism 15 / 29

https://www.cvut.cz/en


Utilizing Integral Equations

Integral Operators and Their Algebraic Representation

Radiated and reactive power:

Prad + 2jω (Wm −We) =
1

2
〈J (r) ,Z [J (r)]〉

Lost power (surface resistivity model):

Plost =
1

2
〈J (r) ,Re {Zs}J (r)〉

I The same approach as with the method of moments6 (MoM)

J (r) ≈
∑
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P+
n

P−
n

ρ+n
ρ−n

A+
n

A−
n

lnT+
n

T−
n

O

r

y

z

x

RWG basis function ψn.

6R. F. Harrington, Field Computation by Moment Methods. Piscataway, New Jersey, United States: Wiley –
IEEE Press, 1993
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Utilizing Integral Equations

Algebraic Representation of Integral Operators
Radiated and reactive power

Prad + 2jω (Wm −We) =
1

2
〈J (r) ,Z [J (r)]〉 ≈ 1

2
IHZI (5)

Electric Field Integral Equation7 (EFIE), Z = [Zmn]:

Zmn =

∫
Ω

ψm · Z (ψn) dS = jkZ0

∫
Ω

∫
Ω

ψm (r1) ·G (r1, r2) ·ψn (r2) dS1 dS2. (6)

I Dense, symmetric matrix.

I An output from PEC 2D/3D MoM code (Ansys FEKO, CST MWS, HFSS,. . . ).
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Utilizing Integral Equations

Algebraic Representation of Integral Operators
Lost power

Plost =
1

2
〈J (r) ,Re {Zs} [J (r)]〉

≈ 1

2
IHLI

(7)

Lmn =

∫
Ω

ψm ·ψn dS (8)

Surface resistivity model:

Zs =
1 + j

σδ
(9)

with skin depth δ =
√

2/ωµ0σ.

I Sparse matrix (diagonal for non-overlapping functions {ψm (r)}).
I The entries Lmn are known analytically.
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I The entries Lmn are known analytically.
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Utilizing Integral Equations

A Note: MoM Solution × Current Impressed in Vacuum

MoM solution

Solution to I = Z−1V for an incident plane wave.

Current impressed in vacuum

Solution to XIi = λiRIi (the first inductive mode).

A current can be chosen completely freely, only the excitation V = ZI may not be realizable.

Miloslav Čapek, et al. Fundamental Bounds In Electromagnetism 18 / 29

https://www.cvut.cz/en


Utilizing Integral Equations

A Note: MoM Solution × Current Impressed in Vacuum

MoM solution

Solution to I = Z−1V for an incident plane wave.

Current impressed in vacuum

Solution to XIi = λiRIi (the first inductive mode).

A current can be chosen completely freely, only the excitation V = ZI may not be realizable.
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Utilizing Integral Equations

Fundamental Bounds as QCQP Problems

I Having quadratic forms for the physical quantities, the antenna metrics may be optimized.

I The problems P1 and P2 are quadratically constrained quadratic programs8 (QCQP).

Maximum radiation efficiency

Problem P1:

minimize Ploss

subject to Prad = 1

Maximum self-resonant radiation efficiency

Problem P2:

minimize Ploss

subject to Prad = 1

ω (Wm −We) = 0
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Problem P2:
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8S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, Great Britain: Cambridge University
Press, 2004
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Solution to QCQP Problems

Solution to Radiation Efficiency Bound (P1)

Lagrangian reads
L (λ, I) = IHLI− λ

(
IHRI− 1

)
. (10)

Stationary points
∂L
∂IH

= LI− λRI = 0 (11)

are solution to generalized eigenvalue problem (GEP):

LIi = λiRIi. (12)

Substituting a discrete set of stationary points {Ii, λi} back to (10) and minimizing gives

min
{Ii}
L (λ, I) = λ1. (13)
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Solution to QCQP Problems

Example: Radiation Efficiency Bound of an L-plate (P1)
ka = 1, Rs = 0.01 Ω/�.

Optimal current (1st mode), Z0/Rs (ka)2 δloss = 17.6.

The 2nd current mode, Z0/Rs (ka)2 δloss = 19.2.

I Constant current has the lowest ohmic losses compared to its radiation.

I Clearly, such current is not realizable (and singular on the boundary).
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Solution to QCQP Problems

Solution to Self-Resonant Radiation Efficiency Bound (P2)

The same solving procedure9 as with problem P1, two Lagrange multipliers, however:

L (λ1, λ2, I) = IHLI− λ1
(
IHRI− 1

)
− λ2IHXI. (14)

Stationary points

(L− λ2X) Ii = λ1,iRIi. (15)

9M. Gustafsson and M. Capek, “Maximum gain, effective area, and directivity,” IEEE Trans. Antennas
Propag., vol. 67, no. 8, pp. 5282 –5293, 2019
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9M. Gustafsson and M. Capek, “Maximum gain, effective area, and directivity,” IEEE Trans. Antennas
Propag., vol. 67, no. 8, pp. 5282 –5293, 2019
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Solution to QCQP Problems

Example: Optimal Currents for L-Shape Plate (P1 & P2)
ka = 1, Rs = 0.01 Ω/�.

Optimal current for P1,
Z0/Rs (ka)2 δloss = 17.6.

Optimal current for P2,
Z0/Rs (ka)4 δloss = 52.3.

The same approach may be applied for any representation of the integral operators.

I Surface MoM, separable bodies, volumetric MoM, hybrid integral methods.
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Miloslav Čapek, et al. Fundamental Bounds In Electromagnetism 23 / 29

https://www.cvut.cz/en


Solution to QCQP Problems

Trade-off Between Antenna Metrics
Example: Radiation efficiency vs. antenna bandwidth10, ka = 1/2, Rs = 1 Ω/�

0.2 0.3 0.5 1 2 3 4

40

60

80

100

A

B C
D

δ/Rs

Q
ra

d
=
Q
/
η

ext. tuned
self-resonantA

B

C

D

10M. Gustafsson, M. Capek, and K. Schab, “Tradeoff between antenna efficiency and Q-factor,” IEEE Trans.
Antennas Propag., vol. 67, no. 4, pp. 2482–2493, 2019
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Solution to QCQP Problems

TARC Minimization

Total active reflection coefficient (TARC)

Γt =

√
1− Prad

Pin
=

√
1− vHg0v

vHkH
i kiv

(16)

is to be minimized with QCQP11:

maximize vHg0v

subject to vHkH
i kiv = 1

(17)
P1

P2 P3

P4

xy

z

Various levels of complexity:

I optimal excitation of ports,

I optimal placement of ports,

I optimal number of ports,

I optimal matching circuitry.

11M. Capek, L. Jelinek, and M. Masek, “Finding optimal total active reflection coefficient and realized gain
for multi-port lossy antennas,” IEEE Transactions on Antennas and Propagation, 2021, early access
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Miloslav Čapek, et al. Fundamental Bounds In Electromagnetism 25 / 29

https://www.cvut.cz/en


Solution to QCQP Problems

TARC Minimization

Total active reflection coefficient (TARC)

Γt =

√
1− Prad

Pin
=

√
1− vHg0v

vHkH
i kiv

(16)

is to be minimized with QCQP11:

maximize vHg0v

subject to vHkH
i kiv = 1

(17)
P1

P2 P3

P4

xy

z

Various levels of complexity:

I optimal excitation of ports,

I optimal placement of ports,

I optimal number of ports,

I optimal matching circuitry.

11M. Capek, L. Jelinek, and M. Masek, “Finding optimal total active reflection coefficient and realized gain
for multi-port lossy antennas,” IEEE Transactions on Antennas and Propagation, 2021, early access
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Tightness of the Bounds

Shapes Known to Be Optimal (In Certain Sense)
Radiation Q-factor12

w

L

L/2
s

(a) (b)

Possible parametrization (unknowns:
s, w, i.e., number of meanders).
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Q
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Qlb,TM
rad

Qrad

Q-factor of meanderline antennas compared to the bound.

12M. Capek, L. Jelinek, K. Schab, et al., “Optimal planar electric dipole antennas: Searching for antennas
reaching the fundamental bounds on selected metrics,” IEEE Antennas and Propagation Magazine, vol. 61,
no. 4, pp. 19–29, 2019
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Tightness of the Bounds

Shapes Known to Be Optimal (In Certain Sense)
Cloaking efficiency (extinction cross section)

x

y

z

A (fixed) rod over a slab (optimized).
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100

εr,c = −10− j1

εr,c = −10− j0.01

kau

1
−
η c

lo
a
k

Cloaking efficiency of optimized slabs compared to the bound ηubcloak.
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Tightness of the Bounds

Conclusion

Bounds (QCQP)

I Help us to understand principal limits.

I We know when to stop with the design procedure.

I Applicable to arbitrarily shaped bodies.

I Inhomogeneous materials, combined metrics, trade-offs.

I Supports constraints on input impedance, complex
power, directional constraints, polarization, etc.

I Sometimes directly realizable (port-modes).

Future

I Other metrics and their bounds.

I So far only single-frequency.

I Piecewise constraints (local power conservation).
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Questions

Questions?

Miloslav Čapek
miloslav.capek@fel.cvut.cz

June 29, 2021
ČES Seminar, Prague, Czech Republic

version 1.0, last edit: June 28, 2021

The presentation is downloadable at I capek.elmag.org
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